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Abstract: Support vector machine has become an increasingly popular tool for machine learning tasks involving classifica- 
tion, regression or novelty detection. Training a support vector machine requires the solution of a very large quadratic 
programming problem. Traditional optimization methods cannot be directly applied due to memory restrictions. Up to 
now, several approaches exist for circumventing the above shortmmings and work well. Another learning algorithm, par- 
ticle swarm optimization, for training SVM is introduted. The method is tested on UCI datasets. 
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1. INTRODUCTION 

The support vector machine (SVM)['] has been suc- 
cessful as a high-performance classifier in several do- 
mains including pattern recognition, data mining, 
and bioinformatics. It has strong theoretical founda- 
tions and good generalization capability. A limitation 
of the SVM design algorithm, particularly for large 
data sets, is the need to solve a quadratic program- 
ming (QP) problem involving a dense n X n matrix, 
where n is the number of points in the data set. 
Since QP routines have high complexity, SVM design 
requires huge memory and computational time for 
large data applications. Several approaches exist for 
circumventing the above shortcomings. These include 
simpler optimization criterion for SVM design, e. g. , 
the linear SVM and the kernel adatron, specialized 
QP algorithms like the cojugate gradient method, de- 
composition techniques which break down the large 
QP problem into a series of smaller QP sub-problems , 
the quential minimal 0pt;n;at;on (SMO) 
and its various extensions, Nystrom appmxi~nations[~~, 
and greedy Bayesian A simple methcd to 
solve the SVM QP problem has been described by Vap- 
nik, which is known as "~hunkng'"~]. 

Most of the above approaches have been employed 
s u d u l l y  to solve the learning of SVM. In this paper, 
we introduce another algorithm, particle swarm optimiza- 
tion (PSO) , as a training methcd of the SVM. 

The PSO technique has been developed by Eberhart 

and Ker~ned$~I and it is a simple evolutionary algorithm 

which differs from other ev0luti;onary computation tech- 
niques in that it is motivated from the simulation of social 
behavior. PSO exhibits good pexformance in finding solu- 
tions to static optimization problems. 

2. OVERVIEW OF SVM 

Consider the problem of separating the set of training 
vectors belonging to two separate classes, (XI ,  y1) , 

, (51, yL ) , where xi € R" is a feature vector and 
yi€ 1 - 1, + 11 a class label, with a hyperplane of 
equation ( w x ) + b = 0. Of all the boundaries d.eter- 
mined by w and b , the one that maximizes the mar- 
gin (Fig. l )  would generalize well as opposed to other 
possible separating hyperplanes. 

Fig. 1 The optimal separating hyperplane 

A canonical hyperplane has the constraint for pa- 
rameters w and b:min,y;((w - xi )  + b )  = l .  A 
separating hyperplane in canonical form must satisfy 
the following constraints 
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cludes, for example, scores produced by dynamic 
alignment algorithms. For binary classification with 

involves maximization of the Lagrangian 

according to its definition. 2 The margin is ~ II w I I  
Hence the hyperplane that separates the da- the given choice of kernel the learning task therefore 
ta is the one that minimizes # ( w ) = 2  1 1 1  w 11 ’. 

The solution to the optimization problem can be 1 

obtained as follows: First, find the maximization so- a 

lution to the following problem 

maxW(a) = max ai - 
a a ($  

with constraints 

i = l  (3) 

2.1 Nonlinear SVM 

In the dual Lagrangian (2)  we notice that the data 
points, x i ,  only appear inside an inner product. To 
get a potentially better representation of the data we 
can map the data points into an alternative space, 
generally called feature space ( a  pre-Hilbert or inner 
product space) through a replacement 

xi * X j - 4 ( X i )  + ( X j )  

The functional form of the mapping # ( x i  ) does 
not need to be known since it is implicitly defined by 
the choice of kernel: K ( x i ,  xj ) = # (xi  1 - # ( xJ ) or 
inner product in Hilbert space. With a suitable choice 
of kernel the data can become separable in feature 
space despite being non-separable in the original input 
space. Thus, whereas data for n-parity or the two 
spirals problem is non-separable by a hyperplane in 
input space it can be separated in the feature space de- 
fined by RBF kernels (giving an RBF-type network) 

Many other choices for the kernel are possible, e. g. 

K ( X i , X j )  = ( X i  xj + 1) d 

K ( x ; , x ~ )  = tanh(bi ~j + b )  

defining polynomial and feedforward neural network 
classifiers. Indeed, the class of mathematical objects 
which can be used as kernels is very general and in- 

subject to constraints (3 ) .  After the optimal values of 
ai have been found the decision function is based on 
the sign of 

1 

f (x> = C a a s ( x  , x i )  + b ( 5 )  

Since the bias, b , does not feature in the above dual 
formulation it is found from the primal constraints 

i = l  

When the maximal margin hyperplane is found in fea- 
ture space, only those points which lie closest to the 
hyperplane have ai > O  and these points are the sup- 
port vectors. All other points have a; = 0. This 
means that the representation of hypothesis is solely 
given by those points which are closest to the hyper- 
plane and they are the most informative patterns in 
the data. 

2.2 Soft Margins and Allowing for Training Errors 

An SVM can fit noise present in the training data 
leading to poor generalization. The effect of outliers 
and noise can be reduced by introducing a soft margin 
to remove the effect of outliers. Currently two 
schemes are possible. In the first (L1 error norm) the 
learning task is the same as in ( 3 , 4 )  except for the 
introduction of the box constraint 

O G a i d C  (7) 

while in the second (Lz error norm) the learning task 
is the same as ( 3 , 4 )  except for addition of a small 
positive constant, A ,  to the leading diagonal of the 
kernel matrix 

K ( ~ i , x j ) + K ( ~ i , ~ j )  + A (8) 
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C and A control the trade-off between training error 
and generalization ability and are chosen by means of 
a validation set. 

3. mvIousMETHoDs 
MIR TRAINING SvM 

All these tasks involve optimization of a quadratic La- 
grangian and thus techniques from quadratic program- 
ming are most applicable including quasi-Newton, co- 
jugate gradient and primal-dual interior point meth- 
ods. Certain QP packages are readily applicable such 
as MINOS and LOQO. These methods can be used to 
train an SVM rapidly but they have the disadvantage 
that the kernel matrix is stored in memory. For small 
datasets this is practical and QP routines are the best 
choice, but for larger datasets alternative techniques 
have to be used. These split into two categories: 
techniques in which kernel components are evaluated 
and discarded during learning and working set meth- 
ods in which an evolving subset of data is used. For 
the first category the most obvious approach is to se- 

quentially update the ai and this is the approach used 
by the kernel Adatron (KA) algorithm[71 . For binary 
classification (with no soft margin or bias) this is a 
simple gradient ascent procedure on ( 4 ) in which 
ai>O initially and the ai are subsequently sequential- 
ly updated using 

ai (pi  ) where 
rn 

pi = ai + 7 ( 1 - ~ i C a j ~ i ~ ( x i , x j ) )  (9) 
j=l  

and B(p) is the Heaviside step function. The optimal 
learning rate 7 can be readily evaluated: 7 = 

l / K ( x i  , x i )  and a sufficient condition for conver- 
gence is 0 < @ ( xi , xi ) < 2. With the decision func- 
tion (5) this method is very easy to implement and 
can give a quick impression of the performance of 
SVM on classification tasks. It is equivalent to Hil- 
dreth' s method in optimization theory and can be 
generalized to the case of soft margins and inclusion of 
a bias[*]. However, it is not as fast as most QP rou- 
tines, especially on small datasets. 

3.1 Chunking and Decomposition 

Rather than sequentially updating the a; the alterna- 
tive is to update the ai in parallel but using only a 

subset or chunk of data at each stage. Thus a QP 
routine is used to optimize the Lagrangian on an ini- 
tial arbitrary subset of data. The support vectors 
found are retained and all other data points (with 
ai = 0) discarded. A new working set of data is then 

derived from these support vectors and additional data 
points which maximally violate the storage con- 
straints. This chunking process is then iterated until 
the margin is maximized. Of course, this procedure 
may still fail because the dataset is too large or the 
hypothesis modeling the data is not sparse (most of 
the ai are non-zero, say). In this case decomposi- 

tion''] methods provide a better approach: these algo- 
rithms only use a fixed size subset of data with the a; 
for the remainder kept fixed. 

3.2 Decomposition and SMO 

The limiting case of decomposition is the SMO algo- 
rithmof Platt in which only two a; are optimized at 
each iteration. The smallest set of parameters which 
can be optimized with each iteration is plainly two if 

the constraint 2 aiyi = 0 is to hold. Remarkably, if 

only two parameters are optimized and the rest kept 
fixed then it is possible to derive this analytical solu- 
tion which can be executed using few numerical oper- 
ations. The method therefore consists of a heuristic 
step for finding the best pair of parameters to opti- 
mize and use of an analytical expression to ensure the 
Lagrangian increases monotonically. For the hard 
margin case the latter is easy to derive from the maxi- 
mization of 6W with respect to the additive correc- 
tions a ,  b in ai-ai + a and aj-a, + b ( i f j ) .  For 
the L1 soft margin care must be taken to avoid viola- 
tion of the constraints (7) leading to bounds on these 
corrections. The SMO algorithm has been refined to 
improve speed and generalized to cover the above 
three tasks of classification, regression and estimating 
densities. Due to its decomposition of the learning 
task and speed it is probably the method of choice for 
training SVM. 

m 

i = l  

4. OVERVIEW OF 

In 1995, Kennedy and Eberhart first introduced PSO 
methcd. It is one of the optimization technique and a 
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kind of evolutionary computation technique. The methcd 
has been found to be robust in mlving problems featuring 
nonlinearity and nondiffemtiability, multiple optima, 
and high dimensionality through adaptation, which is de- 
rived fm the smial-psycholcgical theory. The features of 
the methcd are as follows. 

(a) The method is developed from research on 
swarm such as fish schooling and bird flocking. 

(b) It can be easily implemented, and has stable 
convergence characteristic with good computational 
efficiency. 

Instead of using evolutionary operators to manip- 
ulate the particle (individual), like in other evolu- 
tionary computational algorithms, each particle in 
PSO flies in the search space with velocity which is 
dynamically adjusted according to its own flying expe- 
rience and its companions’ flying experience. Each 
particle is treated as a volumeless particle in D-di- 
mensional search space. 

Each particle keeps track of its coordinates in the 
problem space, which are M a t e d  with the best solution 
(evaluating value) it has achieved m far. This value is 
called pbest. Another best value that is tracked by the 
global version of the particle swarm optimizer is the overall 
best value, and its location, obtained so far by any particle 
in the group, is called &st. 

The PSO concept consists of, at each time step, 
changing the velocity of each particle toward its pbest 
and gbest locations. Acceleration is weighted by a 
random term, with separate random numbers being 
generated for acceleration toward pbest and gbest lo- 
cations. 

For example, the i th  particle is represented as 
xi =   xi,^, xi,2, .-a, xi,D ) in the D-dimensional 
space. The best previous position of the i-th particle 
is recorded and represented as pbesti = ( pbesti,1, 
pbesti,2, * - * ,  pbesti,D ). The index of best particle 

among all of the particles in the group is represented 
by the gbestd . The rate of the position change (veloc- 
ity) for particle i is represented as vi = ( vi,l, q . 2 ,  

, v i , D ) .  The modified velocity and position of each 
particle can be calculated using the current velocity 
and the distance from pbesti,d to gbestd as shown in 
the following formulas 

vitil’ = w vi$ + clrandl()(pbesti ,d - ziti) + 

(101 

( t + l )  = ( t )  + v ( t + l )  
x i , d  xi,d 2.d 

i = 1 , 2 , - - - , n  (11 )  
d = 1,2, . - . ,D 

where n : number of particles in a group; D : number 
of members in a particle; t :  pointer of iterations 
(generations) ; v$f& : velocity of particle j at iteration 

t , -  v < v { f $ < V y ;  w: inertiaweightfactor; 
c1, c2 : acceleration constant; rand1 ( ) , rand2 ( ) : 
random number between 0 and 1 ; x!t& : current pos- 
tion of particle i at iteration t ; pbesti : pbest of parti- 
cle i ; gbest : bgest of the group. 

In the above procedures, the parameter V y  de- 
termined the resolution, or fitness, with which re- 
gions be searched between the present position and 
the target position. If is too high, particles 

might fly past good solutions. If is too small, 
particles may not explore sufficiently beyond local so- 

lutions. In many experiences with PSO, y was of- 
ten set at 10% - 20% of the dynamic range of the 
variable on each dimension. 

The coflstants c1 and c2 represent the weighting of 
the stochastic acceleration terms that pull each particle to- 
ward pkst  and &.st positions. Low values allow particles 
to roam far from the target regions before being tugged 
back. On the other hand, high values result in abrupt 
movement toward, or past, target regions. Hence, the 
acceleration constants c1 and c2 were often set to be 2.0 
according to past experiences. 

Suitable selection of inertia weight w in ( l o )  
provides a balance between global and local explo- 
rations, thus requiring less iteration on average to 
find a sufficiently optimal solution. As originally de- 
veloped, w often decreases linearly from about 0.9 to 
0.4 during a run. In general, the inertia weight w is 
set according to the following equation 

where iter, is the maximum number of itemtiom (gener- 

ations), and t is the current number of iterations. 

5. TRAININGSVM WITH PSO 
Training of an SVM consists of determining the opti- 
mal value of non-negative multipliers (xi .  In the pa- 
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per, we consider the training of a non-linear SVM, 
the training is expressed as a minimization of a dual 
quadratic form 

subject to box constraints 

0 < ai < C ,  V i (14 )  

and one linear equality constraint 

I 

&yi = 0 (15 )  
i = l  

Because the Lagrange multipliers ai constitute a vec- 
tor a =  [ a l , a 2 , . * - , a l ]  in L-dimensional space, the 
optimization of QP problem ( 1 3 )  can be solved by 

PSO. Differing from the general PSO, all particles of 
the PSO training SVM must satisfy both constraints 
(14)  and ( 15) .  Thus, the PSO algorithm must be 
improved. 

According to box constraint ( 1 4 ) ,  Eq. ( 10)  is 
modified to 

temp- v$fil '  = w v!f$ + c,rumiIO(*.sti,d - 

a $ f i )  + c2?-und2()(gbe.$td - a $ f i )  
c - a i r$ ,  a $ f i  + temp- wit:') > c 

( t + l )  = - ai,d, ( t )  a$:$ + temp- v $ ~ ~ "  < o 
temp- v$fi", othervise 

(16 )  
i V i , d  

According to linear equality constraint ( 1 5 )  

if (17 )  is not equal to zero, the velocity vector vit+l) can be updated as follows 

else 

Thus, the Lagrange multipliers a$fd+ ') satisfy 

The searching procedure of optimal or near opti- 

1. Initialize 
(a) Set constants p , C,  c1, c2, iter-, v?, v d ,  

(b) Set constants t = 0. Set random number 

(c) Randomly initialize particle positions a$') E 
, L 

(d) If a$') violate the constraint ( 1 5 ) ,  update 

both constraints (14 )  and ( 1 5 ) .  

mal a are as shown below: 

d,w-, and W-. 

seed. 

R1 ,O<a$li< C , for i = 1 , 2 ,  -.. , p , d = 1 , 2 ,  
where 1 is equal to the number of samples. 

a$') using ( 1 7 ) ,  ( 1 8 ) .  

v$p$ < v y  , for i = 1 , 2 ,  -.*, p , d = 1,2 ,  * - * ,  1 .  
(e) Randomly initialize particle velocities 0 < 

(f) Evaluate cost function values $(a$')) using 
design space coordinates a 5'' for i = 1 ,2, *.* , p . 

(g) Set P = $ ( a $ ' ) )  andpbesti=a;')for i =  
1 ,2 ,  -.-, P .  

(h) Set to minimal P and gbest to cor- 
responding a io' . 

2.  Optimize 
(a) Update inertia weight w using (12 )  
(b) Update particle velocity vectors vlt+l) using 

(c) Update particle position vectors a $ + ') using 

(d) Evaluate cost function d u e  # ( a$' + ') ) using 

( e )  If # ( . I t + ' ) )  < then = 

, *sti = aIt + l )  for i = 1,2 ,  * * .  , p . 

(16 )  - ( 1 8 ) .  

( 1 1 ) .  

design space coordinates for i = 1 , 2 , * - - , p .  
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(f) If then pg = $(a$“’”), 
gbest=ait+’) for 1 ,2 , - - - ,p .  

(g)  If all members of gbest fulfill the Karush- 
KuhmTucker (KKT) optimality conditions of the 
QP problem, or the number of iterations, t , is up to 
iter-, then go to 3. These KKT conditions are 

particularly simple 

ai = O*yFf(xi) > 1 , 0  < ai < C*yf(s;) = 1 
ai = C*yf(q) < 1 (19) 

(h) Increment t . 
(i) Go to 2(a). 
3. Report results 
4. Terminate. 

6. EXPERIMENTS 

The PSO-SVM training algorithm is tested against 
the decompition method on a series of benchmarks. 
PSO-SVM is written in C + +  , using Microsoft’s Vi- 
sual C tc 6 . 0  compiler, and does not make use of 
caching and shrinking implementation techniques. 
Chih-Jen Lin’s LIBSWVI[~~] (version 2 .6) ,  a library 
for SVM and SVR, is used to test the decomposition 
method. The experiments were performed on three 
real-world datasets from the UCI[lll. The results of 
the experiments are shown in Table 1. 

The first test set is the Cleveland heart dataset. 

LIBsvh4 
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The SVM is given 13 attributes chosen of the pa- 
tients and asked to diagnose heart disease status. The 
chosen 13 attributes are all continuously valued. The 
second test is the Wisconsin breast cancer dataset. 
Prediction task is to determine breast cancer is benign 
or malignant. Each sample is described by 9 integer- 
valued attributes. The last test is German credit 
dataset: classifying people described by 24 numerical 
attributes as good or bad credit risks. 

Scaling samples before applying SVM is very 
important. The main advantage is to avoid attributes 
in greater numeric ranges dominate those in smaller 
numeric ranges. Another advantage is to avoid nu- 
merical difficulties during the calculation. Because 
kernel values usually depend on the inner products of 
feature vectors, e. g. the linear kernel and the poly- 
nomial kernel, large attribute values might cause nu- 
merical problems. In our experiments, we scaled lin- 
early each attribute to the range [ 0 , l l .  We trained 
two type of SVM using Gaussian RBF kernels 

m 100 24.9 

We chose a stopping tolerance of 0.005 to the stop- 
ping criterion (19) for quickly finding an optimal so- 
lution. The CPU time of all algorithms were mea- 
sured on a 700 MHz Pentium processor running 
Windows 2000. 

268 

Table 1 ’IEe mdts of the experiments 

LWVM 

Dataset I X q I Algorithm I Training correctness/% I Time (CPU)/s I SVs 

100 2 . 1  97 

pso 100% 34.2 87 

LWVM 

The results of experiments show that training SVM 
ivith PSO is successful and accurate. c0mpar;ng to other 
training algorithms, the training speed of the PSO ap- 
proach is slower than others. But, the PSO approach can 

mnsistentiy search a few support vectors less than others, 
and has better s d n g  ability. 

7. CO”LUSI0N 

In this paper we have shown that the standard parti-, 

100 2.8 895 

cle swarm optimization can be used to train the 
SVM. The experimental results indicate that the 
PSO method is successful and accurate. But, com- 
paring to previous algorithms, the main disadvantage 
of the PSO is its slow training speed. Thus, further 
work shall be done to optimize the training speed of 
the PSO using shrinking, caching and decomposition 
techniques. 

(Continued to page 21 9) 

PSO 100 4 1 . 3  892 
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